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Abstract

We show that single-layer Transformers without positional encoding lack the universal approx-
imation property (UAP), while suitable positional encodings enable it. We further provide
sufficient conditions on positional encodings and reveal their role in establishing the UAP from
an approximation-theoretic perspective.

Motivation and Contributions

The UAP has been a central topic in neural network theory, traditionally studied in the context
of feed-forward networks. Recent works, such as Yun et al. (2020) and Petrov et al. (2024),
extend this analysis to Transformers and explore the role of prompting. However, these studies
overlook a practical constraint: language-model inputs come from a finite vocabulary embedded
in a high-dimensional space. When investigating whether the UAP holds for in-context learning
(ICL) under this constraint, we identify positional encoding as a critical factor.

Lemma 2 (UAP of FNNs). FNNs with
non-polynomial activation functions sat-
isfy the UAP on compact domains.

Lemma 3. A single-layer Transformer
can represent any linear single-hidden-
layer FNN.

Lemma 4. A single-layer Transformer
with non-polynomial or softmax activa-
tion functions achieves the UAP on com-
pact domains.

Lemma 11. Softmax FNNs are universal
approximators on compact domains.

Lemma 13. Kronecker Approximation
Theorem.

Lemma 14. Small perturbations in pa-
rameters in a fixed-width network cause
only small changes in output.

Theorem 7. A constrained Transformer
with set S satisfies the UAP.

Lemma 16. Exponential networks achieve
the UAP even with weights constrained
near a fixed vector.

Proposition 12. A sum of k distinct expo-
nentials has at most k − 1 zeros.

Lemma 5. Restricted FNN class N σ
∗

does not satisfy the UAP.

Theorem 6. Restricted Transformer class
T σ
∗ does not satisfy the UAP.

Theorem 15. A constrained Transformer
with set S in Rdx and a finite output-
token set forming a block-diagonal basis
satisfies the UAP.

Theorem 8. A constrained Transformer satisfies the UAP, with set S:
1. ReLU activation requires density on [−1, 1]dx;

2. Exponential activation only requires local density.

Notations

In the ICL task, when predicting the target at a query vector x ∈ Rdx or z = (x, 0) ∈ Rdx+dy,
we define the input matrix Z as follows:

Z =
[
z(1) z(2) · · · z(n) z

]
:=

[
x(1) x(2) · · · x(n) x
y(1) y(2) · · · y(n) 0

]
∈ R(dx+dy)×(n+1), (1)

where n demonstrations are denoted as z(i) = (x(i), y(i)) and x(i) ∈ Rdx, y(i) ∈ Rdy, for i =
1, 2, ..., n. For neural networks, we denote a one-hidden-layer FNN with activation

function σ as Nσ, and the set of all such networks is denoted as N σ, i.e.,

N σ =
{
Nσ := Aσ(Wx + b)

∣∣ A ∈ Rdy×k, W ∈ Rk×dx, b ∈ Rk, k ∈ N+
}

=

{
Nσ :=

k∑
i=1

aiσ(wi · x + bi)

∣∣∣∣ (ai, wi, bi) ∈ Rdy × Rdx × R, k ∈ N+

}
,

(2)

and a single-layer Transformer without positional encoding is defined as:

Tσ(x;X, Y ) := (Z + V ZMσ((QZ)⊤KZ))dx+1:dx+dy,n+1. (3)

In the above notations, the tokens in context of ICL are general and unrestricted. When we
refer to a “vocabulary”, we mean that the tokens are drawn from a finite set. In this case, we
use subscript ∗, i.e., Tσ

∗(x;X, Y ), to represent the Transformer Tσ(x;X, Y ) defined above,
and denote the set of such Transformers as T σ

∗ :

T σ
∗ =

{
Tσ
∗(x;X, Y ) := Tσ(x;X, Y )

∣∣ z(i) ∈ V , i ∈ {1, 2, · · · , n}, n ∈ N+
}
, (4)

where V denotes the finite vocabulary set.

Universal Approximation Property of In-context

Learning

Before we dive into our results, we first state the following assumption, which is inspired by
Cheng et al. (2024), and is used to simplify our analysis.

Assumption 1.The matrices Q, K, V ∈ R(dx+dy)×(dx+dy) have the following sparse parti-
tion:

Q =

[
B 0
0 0

]
, K =

[
C 0
0 0

]
, V =

[
D E
F U

]
, (5)

where B, C, D ∈ Rdx×dx, E ∈ Rdx×dy, F ∈ Rdy×dx and U ∈ Rdy×dy. Furthermore, the
matrices B, C and U are non-singular, and the matrix F = 0.

The following lemmas emphasize the connection between FNNs and Transformers, which
suggest that the context in Transformers can act as a control parameter for the model.

Lemma 3.Let σ : R → R be a non-polynomial, locally bounded, piecewise continuous
activation function, and Tσ be a single-layer Transformer satisfying Assumption 1. For
any one-hidden-layer network Nσ : Rdx−1 → Rdy ∈ N σ with n hidden neurons, there exist
matrices X ∈ Rdx×n and Y ∈ Rdy×n such that

Tσ (x̃;X, Y ) = Nσ(x), ∀x ∈ Rdx−1. (6)

Lemma 4.Let σ : R → R be a non-polynomial, locally bounded, piecewise continuous
activation function or softmax function, and Tσ be a single-layer Transformer satisfying
Assumption 1, and K be a compact domain in Rdx−1. Then for any continuous function
f : K → Rdy and any ε > 0, there exist matrices X ∈ Rdx×n and Y ∈ Rdy×n such that∥∥Tσ

(
x̃;X, Y

)
− f (x)

∥∥ < ε, ∀x ∈ K. (7)

Non-Universal Approximation Property of T σ
∗

Theorem 6.The function class T σ
∗ , with a non-polynomial, locally bounded, piecewise

continuous element-wise activation function or softmax activation function σ and every
Tσ ∈ T σ

∗ satisfies Assumption 1, cannot achieve the UAP. Specifically, there exist a
compact domain K ⊂ Rdx, a continuous function f : K → Rdy, and ε0 > 0 such that

max
x∈K

∥∥f (x)− Tσ
∗(x̃)

∥∥ ≥ ε0, ∀ Tσ
∗ ∈ T σ

∗ . (8)

The element-wise activation case follows directly from Lemma 3 and Lemma 5. The softmax

case requires additional arguments for normalization, with the proof (using Proposition 12)
provided in Appendix C. Importantly, Theorem 6 holds without any constraints on V , Q, or
K in Eq.(5); see Appendix F.

Universal Approximation Property of T σ
∗,P

After establishing that T σ
∗ can not achieve the UAP, we aim to leverage a key feature of

Transformers: their ability to incorporate APEs during token input. This motivates us to
investigate whether T σ

∗,P can realize the UAP.

Theorem 7.Let T σ
∗,P be the class of functions Tσ

∗,P satisfying Assumption 1, with a non-
polynomial, locally bounded, piecewise continuous element-wise activation function σ,
the subscript refers to the finite vocabulary V = Vx × Vy, P = Px × Py represents the
positional encoding map, and denote a set S as:

S := Vx + Px =
{
xi + P (j)

x

∣∣∣ xi ∈ Vx, i, j ∈ N+
}
. (9)

If S is dense in Rdx, {1, −1,
√
2, 0}dy ⊂ Vy and Py = 0, then T σ

∗,P can achieve the UAP.

More specifically, given a network Tσ
∗,P, then for any continuous function f : Rdx−1 → Rdy

defined on a compact domain K and ε > 0, there always exist X ∈ Rdx×n and Y ∈ Rdy×n

from the vocabulary V, i.e., x(i) ∈ Vx, y
(i) ∈ Vy, with some length n ∈ N+ such that∥∥Tσ

∗,P (x̃;X, Y )− f (x)
∥∥ < ε, ∀x ∈ K. (10)

We reduce a special case of the Transformer to an equivalent FNN (Lemma 3) and exploit
the FNN’s UAP (Lemma 2). The proof constructs context tokens whose embeddings and
positional encodings emulate the target weights, ensuring approximation when the set S is
dense. We later relax this density requirement by removing the unboundedness of Px, aligning
the conditions with practical settings.

Theorem 8.Let T σ
∗,P be the class of functions Tσ

∗,P satisfying Assumption 1, with a non-
polynomial, locally bounded, piecewise continuous element-wise activation function σ,
the subscript refers to the finite vocabulary V = Vx × Vy, P = Px × Py represents the
positional encoding map, and denote a set S as:

S := Vx + Px =
{
xi + P (j)

x

∣∣∣ xi ∈ Vx, i, j ∈ N+
}
. (11)

If the set S is dense in [−1, 1]dx, then T ReLU
∗,P is capable of achieving the UAP. Additionally,

if S is only dense in a neighborhood B(w∗, δ) of a point w∗ ∈ Rdx with radius δ > 0, then
the class of transformers with exponential activation, i.e., T exp

∗,P , is capable of achieving
the UAP.

This section refines the density condition on S by exploiting properties specific to different
activations. For ReLU networks, positive homogeneity allows constraining weights to [−1, 1]
without loss of expressivity. For exponential networks, a weaker condition suffices: deriva-
tives of exp(w ·x) link exponential neurons to polynomial approximation, and finite-difference
schemes implement these derivatives via small weight perturbations. Combined with the
Stone–Weierstrass theorem, this establishes UAP under constrained weights. The result ex-
tends to standard ICL when y(i) = f (x(i)) and Vy satisfies mild conditions.
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