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Abstract

Numerous studies have demonstrated that the Transformer architecture possesses1

the capability for in-context learning (ICL). In scenarios involving function approx-2

imation, context can serve as a control parameter for the model, endowing it with3

the universal approximation property (UAP). In practice, context is represented by4

tokens from a finite set, referred to as a vocabulary, which is the case considered5

in this paper, i.e., vocabulary in-context learning (VICL). We demonstrate that6

VICL in single-layer Transformers, without positional encoding, does not possess7

the UAP; however, it is possible to achieve the UAP when positional encoding is8

included. Several sufficient conditions for the positional encoding are provided.9

Our findings reveal the benefits of positional encoding from an approximation10

theory perspective in the context of ICL.11

1 Intruduction12

Transformers have emerged as a dominant architecture in deep learning over the past few years.13

Thanks to their remarkable performance in language tasks, they have become the preferred framework14

in the natural language processing (NLP) field. A major trend in modern NLP is the development15

and integration of various black-box models, along with the construction of extensive text datasets.16

In addition, improving model performance in specific tasks through techniques such as in-context17

learning (ICL) [1, 2], chain of thought (CoT) [3, 4], and retrieval-augmented generation (RAG) [5]18

has become a significant research focus. While the practical success of these models and techniques19

is well-documented, the theoretical understanding of why they perform so well remains incomplete.20

To explore the capabilities of Transformers in handling ICL tasks, it is essential to examine their21

approximation power. The universal approximation property (UAP) [6–9] has long been a key topic22

in the theoretical study of neural networks (NNs), with much of the focus historically on feed-forward23

neural networks (FNNs). Yun et al. [10] was the first to investigate the UAP of Transformers,24

demonstrating that any sequence-to-sequence function could be approximated by a Transformer25

network with fixed positional encoding. Luo et al. [11] highlighted that a Transformer with relative26

positional encoding does not possess the UAP. Meanwhile, Petrov et al. [12] explored the role of27

prompting in Transformers, proving that prompting a pre-trained Transformer can act as a universal28

functional approximator.29

However, one limitation of these studies is that, in practical scenarios, the inputs to language models30

are derived from a finite set embedded in high-dimensional Euclidean space – commonly referred to31

as a vocabulary. Whether examining the work on prompts in [12] or the research on ICL in [13, 14],32

these studies assume inputs from the entire Euclidean space, which differs significantly from the33

discrete nature of vocabularies used in real-world applications.34
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1.1 Contributions35

Starting with the connection between FNNs and Transformers, we turn to the finite restriction of36

vocabularies and study the benefits of positional encoding. Leveraging the UAP of FNNs, we explore37

the approximation properties of Transformers for ICL tasks in two scenarios: one where positional38

encoding is used and one where it is not. In both cases, the inputs are from a finite vocabulary. More39

specifically:40

1. We first establish a connection between FNNs and Transformers in processing ICL tasks41

(Lemma 3). Using this lemma, we show that Transformers can function as universal42

approximators (Lemma 4), where the context serves as control parameters, while the weights43

and biases of the Transformer remain fixed.44

2. When the vocabulary is finite and positional encoding is not used, we prove that single-layer45

Transformers cannot achieve the UAP for ICL tasks (Theorem 7).46

3. However, when positional encoding is used, it becomes possible for single-layer Transform-47

ers to achieve the UAP (Theorem 8). In particular, for Transformers with ReLU or softmax48

activation functions, the conditions on the positional encoding are relaxed (Theorem 9).49

1.2 Related Works50

Universal approximation property. NNs, through multi-layer nonlinear transformations and51

feature extraction, are capable of learning deep feature representations from raw data. As neural52

networks gain prominence, theoretical investigations—especially into their UAP – have intensified.53

Related studies typically fall into two categories: those allowing arbitrary width with fixed depth [6–54

9], and those allowing arbitrary depth with bounded width [15–18]. Since our study builds on existing55

results regarding the approximation capabilities of FNNs, we focus on investigating the approximation56

abilities of single-layer Transformers in modulating context for ICL tasks. Consequently, our work57

relies more on the findings from the first category of research. The realization of the UAP depends on58

the architecture of the network itself, providing constructive insights for exploring the connection59

between FNNs and Transformers. Recently, Petrov et al. [12] also explored UAP in the context of60

ICL, but without considering vocabulary constraints or positional encodings.61

Transformers. The Transformer is a widely used neural network architecture for modeling se-62

quences [19–24]. This non-recurrent architecture relies entirely on the attention mechanism to63

capture global dependencies between inputs and outputs [19]. The highly effective neural sequence64

transduction model is typically structured using an encoder-decoder framework [25, 26].65

Without positional encoding, the Transformer can be viewed as a stack of N blocks, each consisting66

of a self-attention layer followed by a feed-forward layer with skip connections. In this paper, we67

focus on the case of a single-layer self-attention sequence encoder.68

In-context learning. The Transformer has demonstrated remarkable performance in the field of69

NLP, and large language models (LLMs) are gaining increasing popularity. ICL has emerged as a70

new paradigm in NLP, enabling LLMs to make better predictions through prompts provided within71

the context [2, 27–30]. ICL delivers high performance with high-quality data at a lower cost [31–33].72

It enhances retrieval-augmented methods by prepending grounding documents to the input [34] and73

can effectively update or refine the model’s knowledge base through well-designed prompts [35].74

Positional Encoding. The following explanation clarifies the significance of incorporating posi-75

tional encoding into the Transformer architecture. RNNs capture sequential order by encoding the76

changes in hidden states over time. In contrast, for Transformers, the self-attention mechanism is77

permutation equivariant, meaning that for any model f , any permutation matrix π, and any input x,78

the following holds: f(π(x)) = π(f(x)).79

We aim to explore the impact of positional encoding on the performance of a single-layer Transformer80

when performing ICL tasks with a finite vocabulary. Therefore, we focus on analyzing existing81

positional encoding methods. There are fundamental methods for encoding positional information82

in a sequence within the Transformer: absolute positional encodings (APEs) e.g. [36, 24, 37, 38],83

relative positional encodings (RPEs) e.g. [39, 40, 38] and rotary positional embedding (RoPE) [41].84
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The commonly used APE is implemented by directly adding the positional encodings to the word85

embeddings, and we follow this implementation.86

UAP of ICL. Regarding the understanding of the mechanism of ICL, various explanations have87

been proposed, including those based on Bayesian theory [42, 43] and gradient descent theory [44].88

Fine-tuning the Transformer through ICL alters the presentation of the input rather than the model89

parameters, which is driven by successful few-shot and zero-shot learning [45, 46]. This success90

raises the question of whether we can achieve the UAP through context adjustment.91

Yun et al. [10] demonstrated that Transformers can serve as universal sequence-to-sequence approx-92

imators, while Alberti et al. [47] extended the UAP to architectures with non-standard attention93

mechanisms. However, their implementations allow the internal parameters of the Transformers94

to vary, which does not fully reflect the characteristics of ICL. In contrast, Likhosherstov et al.95

[48] showed that while the parameters of self-attention remain fixed, various sparse matrices can96

be approximated by altering the inputs. Fixing self-attention parameters aligns more closely with97

practical scenarios and provides valuable insights for our work. However, this approach has the98

limitation of excluding the full Transformer architecture. Furthermore, Deora et al. [49] illustrated99

the convergence and generalization of single-layer multi-head self-attention models trained using100

gradient descent, supporting the feasibility of our research by emphasizing the robust generalization101

of Transformers. Nevertheless, Petrov et al. [50] indicated that the presence of a prefix does not102

alter the attention focus within the context, prompting us to explore variations in input context and103

introduce flexibility in positional encoding.104

1.3 Outline105

We will introduce the notations and background results in Section 2. Section 3 addresses the case106

where the vocabulary is finite and positional encoding is not used. Section 4 discusses the benefits of107

using positional encoding. A summary is provided in Section 5. All proof of lemmas and theorems108

are provided in appendix.109

2 Background Materials110

We consider the approximation problem as follows. Given a fixed Transformer network, for any111

target continuous function f : K → Rdy with a compact domain K ⊂ Rdx , we aim to adjust the112

content of the context so that the output of the Transformer network can approximate f . First, we113

present the concrete forms and notations for the inputs of ICL, FNNs, and Transformers.114

2.1 Notations115

Input of in-context learning. In the ICL task, the given n demonstrations are denoted as z(i) =116

(x(i), y(i)) for i = 1, 2, ..., n, where x(i) ∈ Rdx and y(i) ∈ Rdy . Unlike the setting in [13, 14] where117

y(i) was related to x(i) (for example y(i) = ϕ(x(i)) for some function ϕ), we do not assume any118

correspondence between x(i) and y(i), i.e. , x(i) and y(i) are chosen freely. To predict the target at a119

query vector x ∈ Rdx or z = (x, 0) ∈ Rdx+dy , we define the input matrix Z as following:120

Z =
[
z(1) z(2) · · · z(n) z

]
:=

[
x(1) x(2) · · · x(n) x
y(1) y(2) · · · y(n) 0

]
∈ R(dx+dy)×(n+1). (1)

Furthermore, let P : N+ → Rdx+dy represent a positional encoding function, and define P(i) :=121

P(i). Denote the demonstrations with positional encoding as z(i)P := z(i)+P(i) and zP := z+P(n+1).122

The context with positional encoding can then be represented as:123

ZP =
[
z
(1)
P z

(2)
P · · · z

(n)
P zP

]
:=

[
x
(1)
P x

(2)
P · · · x

(n)
P xP

y
(1)
P y

(2)
P · · · y

(n)
P yP

]
∈ R(dx+dy)×(n+1). (2)

Additionally, we denote:124

X =
[
x(1) x(2) · · · x(n)

]
∈ Rdx×n, XP =

[
x
(1)
P x

(2)
P · · · x

(n)
P

]
∈ Rdx×n, (3)

Y =
[
y(1) y(2) · · · y(n)

]
∈ Rdy×n, YP =

[
y
(1)
P y

(2)
P · · · y

(n)
P

]
∈ Rdy×n. (4)
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Feed-forward neural networks. One-hidden-layer FNNs have sufficient capacity to approximate125

continuous functions on any compact domain. In this article, all the FNNs we refer to and use are126

one-hidden-layer networks. We denote a one-hidden-layer FNN with activation function σ as Nσ,127

and the set of all such networks is denoted as N σ , i.e.,128

N σ =
{
Nσ := Aσ(Wx+ b)

∣∣ A ∈ Rdy×k, W ∈ Rk×dx , b ∈ Rk, k ∈ N+
}

=

{
Nσ :=

k∑
i=1

aiσ(wi · x+ bi)

∣∣∣∣ (ai, wi, bi) ∈ Rdy × Rdx × R, k ∈ N+

}
.

(5)

For element-wise activations, such as ReLU, the above notation is well-defined. However, for not129

widely used but considered in this article non element-wise activation function, especially softmax130

activation, we need to give more details for the notation:131

N softmax =

Nsoftmax =

k∑
i=1

aie
wi·x+bi

k∑
i=1

ewi·x+bi

∣∣∣∣∣∣∣∣∣ (ai, wi, bi) ∈ Rdy × Rdx × R, k ∈ N+

 . (6)

Transformers. We define the general attention mechanism following [13, 14] as:132

AttnσQ,K,V (Z) := V ZMσ
(
(QZ)⊤KZ

)
, (7)

where V, Q, K are the value, query, and key matrices in R(dx+dy)×(dx+dy), respectively. M =133

diag(In, 0) is the mask matrix in R(n+1)×(n+1), and σ is the activation function. Here the softmax134

activation of a matrix G ∈ Rm×n is defined as:135 (
softmax(G)

)
i,j

:=
exp

(
Gi,j

)
m∑
l=1

exp
(
Gl,j

) . (8)

With this formulation of the general attention mechanism, we can define a single-layer Transformer136

without positional encoding as:137

Tσ(x;X,Y ) := (Z + V ZMσ((QZ)⊤KZ))dx+1:dx+dy,n+1, (9)

where [a : b, c : d] denotes the submatrix from the a-th row to the b-th row and from the c-th column138

to the d-th column. If a = b (or c = d), the row (or column) index is reduced to a single number.139

Similarly to the notation for FNNs, T σ denotes the set of all Tσ with different parameters.140

Vocabulary. In the above notations, the tokens in context of ICL are general and unrestricted. When141

we refer to a “vocabulary”, we mean that the tokens are drawn from a finite set. More specifically, we142

refer to it as VICL if all input vectors z(i) come from a finite vocabulary V = Vx ×Vy ⊂ Rdx ×Rdy .143

In this case, we use subscript ∗, i.e. Tσ
∗ (x;X,Y ), to represent the Transformer Tσ(x;X,Y ) defined144

in equation (9), and denote the set of such Transformers as T σ
∗ :145

T σ
∗ =

{
Tσ

∗ (x;X,Y ) := Tσ(x;X,Y )
∣∣ z(i) ∈ V, i ∈ {1, 2, · · · , n}, n ∈ N+

}
. (10)

To facilitate the simplification of VICL analysis, we denote a FNN with a finite set of weights as Nσ
∗ ,146

and the corresponding set of such networks as N σ
∗ . More specifically, when the activation function is147

an elementwise activation, we denote:148

N σ
∗ =

{
Nσ

∗ :=

k∑
i=1

aiσ(wi · x+ bi)

∣∣∣∣ (ai, wi, bi) ∈ A×W ×B, k ∈ N+

}
. (11)

where A ⊂ Rdy , W ⊂ Rdx , and B ⊂ R are finite sets. When the activation function is softmax, we149

denote:150

N softmax =

Nsoftmax =

k∑
i=1

aie
wi·x+bi

k∑
i=1

ewi·x+bi

∣∣∣∣∣∣∣∣∣ (ai, wi, bi) ∈ A×W ×B, k ∈ N+

 (12)

where A,W and B are defined as in the previous context.151
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Positional encoding. When positional encoding P is involved, we add the subscript P , i.e.,152

T σ
∗,P =

{
Tσ

∗,P(x;X,Y ) := Tσ(xP ;XP , YP)
∣∣ z(i) ∈ V, i ∈ {1, 2, ..., n}, n ∈ N+

}
. (13)

Note that the context length n in Tσ , Tσ
∗ and Tσ

∗,P are unbounded.153

We present all our notations in Table 1 in Appendix A for easy reference.154

2.2 Universal Approximation Property155

The vanilla form of the UAP for FFNs plays a crucial role in our study. Before we state this property156

as a formal lemma, we put forward the following assumption first, which is similar to the one in [14]157

and is used to simplify the analysis of Transformers.158

Assumption 1. The matrices Q, K, V ∈ R(dx+dy)×(dx+dy) have the following sparse partition:159

Q =

[
B 0
0 0

]
, K =

[
C 0
0 0

]
, V =

[
D E
F U

]
, (14)

where B, C, D ∈ Rdx×dx , E ∈ Rdx×dy , F ∈ Rdy×dx and U ∈ Rdy×dy . Furthermore, the160

matrices B, C and U are non-singular, and the matrix F = 0.161

In addition, we assume the element-wise activation σ is non-polynomial, locally bounded, and162

continuous. In fact, this assumption can be weakened, which will be discussed in Appendix F. Here,163

we have slightly strengthened it for the sake of computational convenience.164

Lemma 2 (UAP of FNNs [9]). Let σ : R → R be a non-polynomial, locally bounded, piecewise165

continuous activation function. For any continuous function f : Rdx → Rdy defined on a compact166

domain K, and for any ε > 0, there exist k ∈ N+, A ∈ Rdy×k, b ∈ Rk, and W ∈ Rk×dx such that167

∥Aσ(Wx+ b)− f(x)∥ < ε, ∀x ∈ K. (15)

The theorem presented above is well-known and primarily applies to activation functions operating168

element-wise. However, it can be readily extended to the case of the softmax activation function. In169

fact, this can be achieved using NNs with exponential activation functions. The specific approach for170

this generalization is detailed in Appendix B.171

2.3 Feed-forward neural networks and Transformers172

It is important to emphasize the connection between FNNs and Transformers, which will be repre-173

sented in the following lemmas and are crucial for establishing our main theory.174

Lemma 3. Let σ : R → R be a non-polynomial, locally bounded, piecewise continuous activation175

function, and Tσ be a single-layer Transformer satisfying Assumption 1. For any one-hidden-layer176

network Nσ : Rdx−1 → Rdy ∈ N σ with n hidden neurons, there exist matrices X ∈ Rdx×n and177

Y ∈ Rdy×n such that178

Tσ (x̃;X,Y ) = Nσ(x), ∀x ∈ Rdx−1. (16)

There is a difference in the input dimensions of Tσ and Nσ, as the latter includes a bias dimension179

absent in the former. To connect the two inputs, x̃ and x, we use a tilde, where x̃ is formed by180

augmenting x with an additional one appended to the end.181

By employing the structure of K, Q and V in equation (14), the output forms of the Transformer182

Tσ
(
x̃;X,Y

)
can be simplified as follows:183

Tσ
(
x̃;X,Y

)
=

([
X x̃
Y 0

]
+

[
DX + EY 0
FX + UY 0

]
σ

([
X⊤B⊤CX X⊤B⊤Cx̃
x̃⊤B⊤CX x̃⊤B⊤Cx̃

]))
dx+1:dx+dy,n+1

= (FX + UY )σ(X⊤B⊤Cx̃) = UY σ(X⊤B⊤Cx̃).
(17)

Comparing this with the output form of FNNs, i.e., Nσ(x) = Aσ(Wx+ b), it becomes evident that184

setting X = (C⊤B)−1 [W b]
⊤ and Y = U−1A is sufficient to finish the proof.185
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It can be observed that the form in equation (17) exhibits the structure of an FNN. Consequently,186

Lemma 3 implies that single-layer Transformers Tσ in the context of ICL and FNNs Nσ are equivalent.187

However, this equivalence does not hold for the case of softmax activation due to differences in the188

normalization operations between FNNs and Transformers. Therefore, in the subsequent sections of189

this article, we employ different analytical methods to address the two types of activation functions.190

Moreover, the equivalence in equation (16) suggests that the context in Transformers can act as a191

control parameter for the model, thereby endowing it with the UAP.192

2.4 Universal Approximation Property of In-context Learning193

We now present the UAP of Transformers in the context of ICL.194

Lemma 4. Let σ be a non-polynomial, locally bounded, piecewise continuous activation function or195

softmax activation function, and Tσ be a single-layer Transformer satisfying Assumption 1, and K be196

a compact domain in Rdx−1. Then for any continuous function f : K → Rdy and any ε > 0, there197

exist matrices X ∈ Rdx×n and Y ∈ Rdy×n such that198 ∥∥Tσ
(
x̃;X,Y

)
− f(x)

∥∥ < ε, ∀x ∈ K. (18)

For the case of element-wise activation, the result follows directly by combining Lemma 2 and199

Lemma 3. However, for the softmax activation, the normalization operation requires an additional200

technique in the proof. The core idea is to construct an FNN with exponential activation func-201

tions, incorporating an additional neuron to handle the normalization effect. Detailed proofs are202

provided in Appendix B. Similar results have been obtained in recent work [12], though via different203

methodologies.204

3 The Non-Universal Approximation Property of N σ
∗ and T σ

∗205

One key aspect of ICL is that the context can act as a control parameter for the model. We now206

consider the case where the tokens in context is restricted to a finite vocabulary. A natural question207

arises: can single-layer Transformers with a finite vocabulary, i.e., T σ
∗ , still achieve the UAP via208

ICL? We first analyze N σ
∗ for simplicity, then using the established connection between FNNs and209

Transformers to extend the result to T σ
∗ . The answer is that N σ

∗ cannot achieve the UAP because of210

the restriction of finite parameters.211

For element-wise activations, the span of N σ
∗ , span{N σ

∗ }, forms a finite-dimensional function space.212

According to results from functional analysis, span{N σ
∗ } is closed under the function norm (see e.g.213

Theorem 1.21 of [51] or Corollary C.4 of [52]). This implies that the set of functions approximable214

by span{N σ
∗ } is precisely the set of functions within span{N σ

∗ }. Consequently, any function not in215

span{N σ
∗ } cannot be arbitrarily approximated, meaning that the UAP cannot be achieved.216

For softmax networks, the normalization operation introduces further limitations. Even though217

Nsoftmax
∗ consists of weighted units drawn from a fixed finite collection of basic units, normalization218

prevents these networks from being simple linear combinations of one another. While the span of219

N softmax
∗ might theoretically have infinite dimensionality, its expressive power remains constrained.220

To better understand the behavior of functions within N softmax
∗ , we present the following proposition221

as an introduction.222

Proposition 5. The scalar function hk(x) =
k∑

i=1

aie
bix, where ai, bi, x ∈ R and at least one ai is223

nonzero, has at most k − 1 zero points.224

Proposition 5 establishes the maximum number of zero points for this class of functions. The result225

can be proved using mathematical induction. The detailed proof is provided in the Appendix C. Then226

we can summarize the non-universal approximation property of N σ
∗ in the following lemma.227

Lemma 6. The function class N σ
∗ , with a non-polynomial, locally bounded, piecewise continuous228

element-wise activation function or softmax activation function σ, cannot achieve the UAP. Specifi-229

cally, for any compact domain K ⊂ Rdx , there exists a continuous function f : K → Rdy and ε0 > 0230

such that231

max
x∈K

∥∥f(x)−Nσ
∗ (x̃)

∥∥ ≥ ε0, ∀ Nσ
∗ ∈ N σ

∗ . (19)
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In the proof of Lemma 6, we demonstrated through Proposition 5 that the number of zeros of232

Nsoftmax
∗ depends solely on a finite set of parameters and constitutes a bounded quantity. Functions233

can be explicitly constructed whose number of zeros exceeds this bound, thereby preventing their234

approximation within N softmax
∗ .235

By leveraging the connection between FNNs and Transformers, we establish Theorem 7 to demon-236

strate that T σ
∗ cannot achieve the UAP.237

Theorem 7. The function class T σ
∗ , with a non-polynomial, locally bounded, piecewise continuous238

element-wise activation function or softmax activation function σ and every Tσ ∈ T σ
∗ satisfys239

Assumption 1, cannot achieve the UAP. Specifically, for any compact domain K ⊂ Rdx−1, there exists240

a continuous function f : K → Rdy and ε0 > 0 such that241

max
x∈K

∥∥f(x)− Tσ
∗ (x̃)

∥∥ ≥ ε0, ∀ Tσ
∗ ∈ T σ

∗ . (20)

The result for element-wise activations follows directly from the application of Lemma 3 and242

Lemma 6. However, the case of the softmax activation requires additional techniques to account243

for the normalization effect. The proof, which utilizes Proposition 5 once again, is presented in the244

Appendix C. It is worth noting that Theorem 7 holds even without imposing any constraints on the245

V , Q and K (e.g., the sparse partition described in equation (14)). Further details can be found in246

Appendix F.247

4 The Universal Approximation Property of T σ
∗,P248

After establishing that neither N σ
∗ nor T σ

∗ can achieve the UAP, we aim to leverage a key feature of249

Transformers: their ability to incorporate APEs during token input. This motivates us to investigate250

whether T σ
∗,P can realize the UAP.251

The answer is affirmative. To support our constructive proof, we invoke the Kronecker Approximation252

Theorem as a key auxiliary tool. This result ensures the density of certain structured sets in Rn under253

mild arithmetic conditions. The formal statement and discussion of this theorem are provided in254

Appendix D.255

Theorem 8. Let T σ
∗,P be the class of functions Tσ

∗,P satisfying Assumption 1, with a non-polynomial,256

locally bounded, piecewise continuous element-wise activation function σ, the subscript refers the257

finite vocabulary V = Vx ×Vy, P = Px ×Py represents the positional encoding map, and denote a258

set S as:259

S := Vx + Px =
{
xi + P(j)

x

∣∣∣ xi ∈ Vx, i, j ∈ N+
}
. (21)

If S is dense in Rdx , {1, −1,
√
2, 0}dy ⊂ Vy and Py = 0, then T σ

∗,P can achieve the UAP. More260

specifically, given a network Tσ
∗,P , then for any continuous function f : Rdx−1 → Rdy defined on a261

compact domain K and ε > 0, there always exist X ∈ Rdx×n and Y ∈ Rdy×n from the vocabulary262

V , i.e. x(i) ∈ Vx, y
(i) ∈ Vy , with some length n ∈ N+ such that263 ∥∥Tσ

∗,P (x̃;X,Y )− f(x)
∥∥ < ε, ∀x ∈ K. (22)

We provide a constructive proof in Appendix C, and here we only demonstrate the proof idea by264

considering the specific case of dy = 1 and assuming the matrices U in the Transformer Tσ
∗,P is an265

identity matrice. In this case, the Transformer can be simplified to an FNN Nσ
∗ , that is266

Tσ
∗,P(x;X,Y ) = YPσ

(
X⊤

PB⊤Cx̃
)
=

n∑
j=1

y(j)σ

((
x(j) + P(j)

x

)
B⊤C · x̃

)
, (23)

which is similar to the calculation in equation (17). The UAP of FNNs shown in Lemma 2 implies267

that the target function f can be approximated by an FNN with k hidden neurons,268

Nσ(x) = Aσ(Wx̃+ b) =

k∑
i=1

aiσ(wi · x+ bi) =

k∑
i=1

aiσ(w̃i · x̃). (24)

Since we are considering a continuous activation function σ, we can conclude that slightly perturb-269

ing the parameters A and W will lead to new FNN that can still approximate f . This motivates270
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us to construct a proof using the property that each w̃i ∈ Rdx can be approximated by vectors271

xPB
⊤C, xP ∈ S = Vx + Px, and each ai ∈ R can be approximated by qi

√
2 ± li, with positive272

integers qi and li.273

For ease of exposition, we will first show how to construct X,Y so as to approximate the first term in274

the summation in equation (24), namely a1σ
(
w̃1 · x̃

)
. By lemma 6, we may choose positive integers275

q and l such that q
√
2± l is sufficiently close to a1. Consider the first token in the context. Since the276

positional encoding is fixed, i.e. Vx + P(1) is a finite set, one of two cases must occur:277

1. if there exists a token x(1) ∈ Vx for which x(1) + P(1) is sufficiently close to w̃1, then we278

declare this position “valid”;279

2. otherwise, we declare the position “invalid”, and choose any x(1) ∈ Vx, and set y(1) = 0 so280

as to nullify its contribution in the sum.281

We then proceed inductively: having handled the first token, we construct the second token in exactly282

the same manner, then the third, and so on, until we have identified q+ l valid positions. Because S is283

dense in Rdx and q, l are finite, this selection process necessarily terminates after finitely many steps.284

Finally, we assign y(i) =
√
2 for q of the valid positions and y(i) = ±1 for other l valid positions. Up285

to now, we have built a partial context that enables the output of Tσ
∗,P to approximate a1σ

(
w̃1 · x̃

)
286

with arbitrarily small error. Once we have approximated a1σ
(
w̃1 · x̃

)
, we can in finitely many further287

steps similarly approximate a2σ
(
w̃2 · x̃

)
, · · · , akσ

(
w̃k · x̃

)
, thereby completing the construction288

of the full context X and Y . In the proof idea above, we take the density of the set S in Rdx as a289

fundamental assumption. Vx contains only finitely many elements, rendering it bounded. For S to be290

dense in the entire space, Px must be unbounded.291

Next, we relax this requirement, eliminating the need for Px to be bounded, making the conditions292

more aligned with practical scenarios. Particularly, we consider the specific activation function in293

the following theorem, where the notations not explicitly mentioned remain consistent with those in294

Theorem 8. We present the an informal version, and the formal version is provided in Appendix E.295

Theorem 9 (Informal Version). If the set S is dense in [−1, 1]dx , then T ReLU
∗,P is capable of achieving296

the UAP. Additionally, if S is only dense in a neighborhood B(w∗, δ) of a point w∗ ∈ Rdx with297

radius δ > 0, then the class of transformers with exponential activation, i.e. T exp
∗,P , is capable of298

achieving the UAP.299

The density condition on S is significantly refined here, which we will discuss in the later remark.300

This improvement is possible because the proof of Theorem 8 relies directly on the UAP of FNNs,301

where the weights take values from the entire parameter space. However, for FNNs with specific302

activations, we can restrict the weights to a small set without losing the UAP.303

For ReLU networks, we can use the positive homogeneity property, i.e. AReLU(Wx̃) =304

λ−1AReLU
(
λWx̃

)
for any λ > 0, to restrict the weight matrix W . In fact, the restriction that305

all elements of W take values in the interval [−1, 1] does not affect the UAP of ReLU FNNs because306

the scale of W can be recovered by adjusting the scale of A via choosing a proper λ.307

For exponential networks, the condition on S is much weaker than in the ReLU case. This relaxation308

is nontrivial, and the proof stems from a property of the derivatives of exponential functions. Consider309

the exponential function exp(w · x) as a function of w ∈ B(w∗, δ), and denote it as h(w),310

h(w) = exp(w · x) = ew1x1+···+wdxd , w, x ∈ Rd, d = dx, (25)
where wi and xi ∈ R are the components of w and x, respectively. Calculating the partial derivatives311

of h(w), we observe the following relations:312

∂αh

∂wα
:=

∂|α|h

∂wα1
1 · · · ∂wαd

d

= xα1
1 · · ·xαd

d h(w), (26)

where α = (α1, . . . , αd) ∈ Nd is the index vector representing the order of partial derivatives, and313

|α| := α1 + · · ·+ αd. This relationship allows us to link exponential FNNs to polynomials since any314

polynomial P (x) can be represented in the following form:315

P (x) = exp
(
− w∗ · x

)(∑
α∈Λ

aα
∂|α|h

∂wα

)∣∣∣∣∣
w=w∗

, (27)
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where aα are the coefficients of the polynomials, Λ is a finite set of indices, and the partial derivatives316

can be approximated by finite differences, which are FNNs. For example, the first-order partial317

derivative ∂h
∂w1

∣∣
w=w∗ = x1h(w

∗) can be approximated by the following difference with a small318

nonzero number λ ∈ (0, δ),319

h(w∗ + λe1)− h(w∗)

λ
= λ−1 exp((w∗ + λe1) · x)− λ−1 exp(w∗ · x). (28)

This is an exponential FNN with two neurons. Finally, employing the well-known Stone-Weierstrass320

theorem, which states that any continuous function f on compact domains can be approximated by321

polynomials, and combining the above relations between FNNs and polynomials, we can establish322

the UAP of exponential FNNs with weight constraints.323

Remark 10. When discussing density, one of the most immediate examples that comes to mind is324

the density of rational numbers in R. How can we effectively enumerate rational numbers? The325

work by [53] introduces an elegant method for enumerating positive rational numbers, synthesizing326

ideas from [54] and [55]. It demonstrates the computational feasibility of enumeration through an327

effective algorithm. Thus, we assume that positional encodings can be implemented using computer328

algorithms, such as iterative functions.329

5 Conclusion330

In this paper, we establish a connection between FNNs and Transformers through ICL. By leveraging331

the UAP of FNNs, we demonstrate that the UAP of ICL holds when the context is selected from332

the entire vector space. When the context is drawn from a finite set, we explore the approximation333

power of VICL, showing that the UAP is achievable only when appropriate positional encodings are334

incorporated, underscoring the importance of positional encodings.335

In our work, we consider Transformers with input sequences of arbitrary length, implying that the336

positional encoding Px consists of a countably infinite set of elements. In Theorem 8, we assume a337

strong density condition, which is later relaxed in Theorem 9. However, in practical applications,338

input sequences are finite, typically truncated for computational feasibility. This shift allows our339

conclusions to be interpreted through an approximation lens, where the objective is to approximate340

functions within a specified error margin, rather than achieving infinitesimal precision. Additionally,341

to achieve the UAP, it is insightful to compare the function approximation capabilities of our approach342

(outlined in Lemma 4) with the direct use of FNNs, particularly when the Transformer parameters343

are trainable.344

It is important to note that this paper is limited to single-layer Transformers with APEs, and the main345

results (Theorem 8 and Theorem 9) focus on element-wise activations. Future research should extend346

these findings to multi-layer Transformers, general positional encodings (such as RPEs and RoPE),347

and softmax activations. For softmax Transformers, our analysis in Sections 2 and 3 highlighted their348

connection to Transformers with exponential activations. However, extending this connection to the349

scenario in Section 4 proves challenging and requires more sophisticated techniques.350

Although this paper primarily addresses theoretical issues, we believe our results can offer valuable351

insights for practitioners. Specifically, in Remark 10, we observe that certain algorithms use function352

composition to enumerate numbers dense in R. This idea could inspire the design of positional353

encodings via compositions of fixed functions, similar to RNN approaches. RNNs capture the354

sequential nature of information by integrating the importance of word order in sentence meaning.355

However, to the best of our knowledge, existing research on RNNs has not explored the denseness356

properties of the sets formed by their hidden state sequences. We hope this unexplored property will357

inspire experimental research in future studies. Furthermore, our construction for Theorem 8 relies358

on the sparse partition assumption in equation (14). The practical validity of this assumption remains359

uncertain, and we leave this question open for future exploration.360

In fact, [56, 57] on continuous CoTs and continuous states have certain connections to our work –361

specifically, leveraging positional encoding to enable Transformers to achieve the UAP for functions362

whose domain is a finite set while the range covers the entire Euclidean space. Moreover, Xiao et al.363

[58] proposing an approach for automatically adjusting prompts for function fitting is also related to364

our theoretical findings. Therefore, with further research, our theory holds practical significance.365
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A Table of Notations537

We present all our notations in Table 1 for easy reference.538

Table 1: Table of Notations

Notations Explanations

dx, dy Dimensions of input and output.
P Positional encoding.

X,Y Context without positional encoding.
XP , YP Context with positional encoding P .

Z Input without positional encoding.
ZP Input with positional encoding P .
V Vocabulary.

Vx, Vy Vocabulary of x(i) and y(i).
σ Activation function.
# The cardinality of a set.

Nσ, N σ One-hidden-layer FNN and its collection.
Tσ, T σ Single-layer Transformer and its collection.
Nσ

∗ , N σ
∗ One-hidden-layer FNN with a finite set of weights and its collection.

Tσ
∗ , T σ

∗ Single-layer Transformer with vocabulary restrictions and its collection.

Tσ
∗,P , T σ

∗,P
Single-layer Transformer with positional encoding, vocabulary restrictions,
and its collection.

∥ · ∥ The uniform norm of vectors, i.e., a shorthand for ∥ · ∥∞.

x̃ Append a one to the end of x, i.e., x̃ =

[
x
1

]
.

B Proofs of Section 2539

We provide detailed proofs of lemmas in Section 2. We will first directly proof Lemma 3 using540

Lemma 2. Next, by a similar method together with an additional technical refinement, we will541

establish Lemma 12. Finally, leveraging Lemma 12, we will prove Lemma 4.542

B.1 Proof of Lemma 3543

Lemma 3. Let σ : R → R be a non-polynomial, locally bounded, piecewise continuous activation544

function, and Tσ be a single-layer Transformer satisfying Assumption 1. For any one-hidden-layer545

network Nσ : Rdx−1 → Rdy ∈ N σ with n hidden neurons, there exist matrices X ∈ Rdx×n and546

Y ∈ Rdy×n such that547

Tσ (x̃;X,Y ) = Nσ(x), ∀x ∈ Rdx−1. (29)

Proof. We can directly compute the output of Tσ is548

Tσ(x̃, X, Y ) =
(
Z + AttnσQ,K,V (x̃, X, Y )

)
dx+1:dx+dy,n+1

=
(
Z + V ZMσ(Z⊤Q⊤KZ))dx+1:dx+dy,n+1

=

(
Z +

[
DX + Ey 0

UY 0

] [
σ(X⊤B⊤CX) σ(X⊤B⊤Cx̃)
σ(x̃⊤B⊤CX) σ(x̃⊤B⊤Cx̃)

])
dx+1:dx+dy,n+1

= UY σ(X⊤B⊤Cx̃).
(30)

One can easily observe that the output closely resembles that of a single-layer FNN. Suppose549

Nσ(x) = Aσ(Wx + b) : Rdx−1 → Rdy is an arbitrary single-layer FNN with k hidden neurons,550

where and W ∈ Rk×(dx−1), A ∈ Rdy×k, b ∈ Rk. We construct the context by setting its length to551

k, i.e. X ∈ Rdx×k, Y ∈ Rdy×k. Then, through straightforward calculation, we find that choosing552

X = (C⊤B)−1 [W b]
⊤
, Y = U−1A, (31)
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is sufficient to ensure that Tσ (x̃;X,Y ) = Nσ(x).553

Remark 11. It is worth noting that in the above proof, the matrix F was set to zero in accordance554

with Assumption 1. However, we emphasize that this is not a strict requirement. In fact, one can555

accommodate arbitrary F by choosing Y = U−1(A− FX). The choice F = 0 is made purely for556

computational convenience under our current assumptions.557

B.2 Proof of the UAP of Softmax FNNs558

Before proving Lemma 4, we demonstrate the UAP of softmax FNNs as a supporting lemma.559

Lemma 12 (UAP of Softmax FNNs). For any continuous function f : Rdx → Rdy defined on a560

compact domain K, and for any ε > 0, there exist a network Nsoftmax(x) : Rdx → Rdy satisfying561

∥Nsoftmax(x)− f(x)∥ < ε, ∀x ∈ K. (32)

Proof. We first build a bridge connecting softmax FNNs and target function f according to Theorem 2.562

We can construct a network563

Nexp(x) = A exp(Wx+ b) =

k∑
i=1

aie
wi·x+bi , (33)

with k hidden neurons satisfying564

max
x∈K

∥Nexp(x)− f(x)∥ <
ε

2
, (34)

where ai ∈ Rdy , wi ∈ Rdx , bi ∈ R. Then we only need to construct a softmax FNN Nsoftmax(x)565

which can approximate such Nexp(x), and this can be succinctly described as seeking a method to566

eliminate the effects of normalization.567

Consider a softmax FNN568

Nsoftmax(x) = A′ softmax
(
W ′x+ b′

)
=

k+1∑
i=1

a′ie
w′

i·x+b′i

k+1∑
j=1

ew
′
j ·x+b′j

, (35)

with k + 1 hidden neurons, where w′
k+1 = b′k+1 = 0, b′i = b′i(ε) is sufficiently small to satisfy569

ew
′
i·x+b′i <

ε

2k
(
1 + maxx∈K ∥Nexp(x)∥

) , ∀x ∈ K, i = 1, 2, · · · , k, (36)

and w′
i = wi for i = 1, 2, · · · , k. This arrangement ensures that, in the denominators of each term in570

Equation (35), the first k entries are arbitrarily small, while the (k + 1)-th entry is exactly one. We571

then simply adjust A′ so that the numerators coincide with those in Equation (33), and this can be572

done by setting a′i =

{
aie

bi−b′i , i = 1, 2, · · · , k
0, i = k + 1

. With the formal construction now complete, we573

present a more precise estimate of the approximation error as follows.574
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∥Nexp(x)−Nsoftmax(x)∥ = max
x∈K

∥∥∥∥∥∥∥∥∥
k∑

i=1

aie
wi·x+bi −

k+1∑
i=1

a′ie
w′

i·x+b′i

k+1∑
j=1

ew
′
j ·x+b′j

∥∥∥∥∥∥∥∥∥
= max

x∈K

∥∥∥∥∥∥∥∥∥
k∑

i=1

aie
wi·x+bi −

k∑
i=1

aie
wi·x+bi

k∑
j=1

ew
′
j ·x+b′j + 1

∥∥∥∥∥∥∥∥∥
= max

x∈K
∥Nexp(x)∥ ·max

x∈K

∥∥∥∥∥∥∥∥∥1−
1

k∑
j=1

ew
′
j ·x+b′j + 1

∥∥∥∥∥∥∥∥∥
≤ max

x∈K
∥Nexp(x)∥ ·max

x∈K

∥∥∥∥ k∑
j=1

ew
′
j ·x+b′j

∥∥∥∥
≤ ε

2
.

(37)

This leads to the conclusion that ∥Nsoftmax(x) − f(x)∥ < ε for all x ∈ K, which finishes the575

proof.576

B.3 Proof of Lemma 4577

Lemma 4. Let σ : R → R be a non-polynomial, locally bounded, piecewise continuous activation578

function or softmax function, and Tσ be a single-layer Transformer satisfying Assumption 1, and579

K be a compact domain in Rdx−1. Then for any continuous function f : K → Rdy and any ε > 0,580

there exist matrices X ∈ Rdx×n and Y ∈ Rdy×n such that581 ∥∥Tσ
(
x̃;X,Y

)
− f(x)

∥∥ < ε, ∀x ∈ K. (38)

Proof. For element-wise activation cases, with the help of Theorem 2 and Lemma 3, the conclusion582

follows trivially.583

Then we solve the softmax case. Similarly, for any ε > 0, we can construct a softmax FNN584

Nsoftmax(x) with k hidden neurons, using Lemma 12 such that585

max
x∈K

∥Nsoftmax(x)− f(x)∥ <
ε

2
. (39)

Then what we need to do is to approximate this softmax FNN with a softmax transformer. We can586

directly compute the following587

Tsoftmax(x̃, X, Y )

=

(
Z +

[
DX + EY 0

UY 0

]
softmax

([
X⊤B⊤CX X⊤B⊤Cx̃
x̃⊤B⊤CX x̃⊤B⊤Cx̃

]))
dx+1:dx+dy,n+1

= UY

(
softmax

([
X⊤B⊤Cx̃
x̃⊤B⊤Cx̃

]))
1:n

.

(40)

Through comparing the output with the exponential FNN, we can find out that there is one more588

bounded positive term t(x) := exp
(
x̃⊤B⊤Cx̃

)
when processing normalization.589

Chose the length of context n = k + 1 and X, Y such that590

X⊤B⊤C =

[
W b+ s1
0 s

]
, UY = [A 0] (41)
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where 1 is all-ones vector and s is big enough, making591

ex̃
⊤B⊤Cx̃−s <

ε

2
(
1 + maxx∈K ∥Nsoftmax(x)∥

) , ∀x ∈ K. (42)

Then X⊤B⊤Cx̃ =

[
W b+ s1
0 s

] [
x
1

]
=

[
Wx+ b+ s1

s

]
, and we can compute a detailed form of592

Tsoftmax(x̃;X,Y ) as:593

Tsoftmax(x̃;X,Y ) =

k∑
i=1

ai exp(wi · x+ bi + s)

k∑
j=1

exp(wj · x+ bj + s) + exp(s) + exp(x̃⊤B⊤Cx̃)

=

k∑
i=1

ai exp(wi · x+ bi)

k∑
j=1

exp(wj · x+ bj) + 1 + exp(x̃⊤B⊤Cx̃− s)

.

(43)

We focus on estimating the upper bound of the distance between Nsoftmax and Tsoftmax, that is594

max
x∈K

∥Nsoftmax(x)− Tsoftmax(x̃;X,T )∥

= max
x∈K

∥∥∥∥∥∥∥∥∥
k∑

i=1

ai exp(wi · x+ bi)

k∑
j=1

exp(wj · x+ bj) + 1

−

k∑
i=1

ai exp(wi · x+ bi)

k∑
j=1

exp(wj · x+ bj) + 1 + exp(x̃⊤B⊤Cx̃− s
)
∥∥∥∥∥∥∥∥∥

= max
x∈K

∥Nsoftmax(x)∥ ·max
x∈K

∥∥∥∥∥∥∥∥∥1−
k∑

j=1

exp(wj · x+ bj) + 1

k∑
j=1

exp(wj · x+ bj) + 1 + exp(x̃⊤B⊤Cx̃− s
)
∥∥∥∥∥∥∥∥∥

= max
x∈K

∥Nsoftmax(x)∥ ·max
x∈K

∥∥∥∥∥∥∥∥∥
exp(x̃⊤B⊤Cx̃− s

)
k∑

j=1

exp(wj · x+ bj) + 1 + exp(x̃⊤B⊤Cx̃− s
)
∥∥∥∥∥∥∥∥∥

≤ max
x∈K

∥Nsoftmax(x)∥ ·max
x∈K

∥∥ exp(x̃⊤B⊤Cx̃− s
)∥∥

≤ ε

2
.

(44)

As a consequence, we have
∥∥Tσ

(
x̃;X,Y

)
− f(x)

∥∥ < ε for all x ∈ K, which finishes the proof.595

C Proofs of Section 3596

In this appendix, we provide detailed proofs of Proposition 5, Lemma 6 and Theorem 7 presented in597

Section 3. We will first using induction to prove Proposition 5, then employ this proposition together598

with a proof by contradiction to establish Lemma 6 and Theorem 7.599

C.1 Proof of Proposition 5600

Proposition 5. The scalar function hk(x) =
k∑

i=1

aie
bix, where ai, bi, x ∈ R and at least one ai is601

nonzero, has at most k − 1 zero points.602

Proof. We prove this statement by induction. When k = 1 and 2, the statement is easy to prove.603

We suppose hN (x) has at most N − 1 zero points, now consider the case k = N + 1. Let604
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hN+1(x) =
∑N+1

i=1 aie
bix. Without loss of generality, assume that aN+1 ̸= 0. Thus, we can rewrite605

hN+1(x) as606

hN+1(x) = aN+1e
bN+1x

(
1 +

N∑
i=1

ai
aN + 1

e(bi−bN+1)x
)
:= aN+1e

bN+1xg(x).

Then we process by contradiction. Suppose hN+1(x) has more than N zero points, which implies607

g(x) has more than N zero points. Then, according to Rolle’s Theorem, g′(x) must have more than608

N − 1 zero points, which contradicts our assumption. Thus, hN+1 have at most N zero points, and609

the proof is complete.610

C.2 Proof of Lemma 6611

Lemma 6. The function class N σ
∗ , with a non-polynomial, locally bounded, piecewise continuous612

element-wise activation function or softmax activation function σ, cannot achieve the UAP. Specifi-613

cally, for any compact domain K ⊂ Rdx , there exists a continuous function f : K → Rdy and ε0 > 0614

such that615

max
x∈K

∥∥f(x)−Nσ
∗ (x̃)

∥∥ ≥ ε0, ∀ Nσ
∗ ∈ N σ

∗ . (45)

Proof. For any element-wise activations σ, span{N σ}, forms a finite-dimensional function space.616

Span{N σ} is closed under the uniform norm supported by Theorem 2.1 from [51] and Corollary617

C.4 from [52]. This implies that the set of functions approximable by span{N σ} is precisely the618

set of functions within span{N σ}. Consequently, any function not in span{N σ} cannot arbitrarily619

approximated, meaning that the UAP cannot be achieved.620

Then we prove the softmax case. First, we simplify the problem to facilitate the construction of a621

function that cannot be approximated. We observe that it suffices to prove the UAP fails when the first622

input coordinate ranges over [0, 1] and all other coordinates are held fixed. Indeed, for any compact623

set K ⊂ Rdx , we can find a closed cube
∏dx

i=1[li, ri] ⊂ K. If we can show that N softmax does not624

achieve the UAP on [l1, r1]×
∏dx

i=2{li}, then, by applying a suitable affine change of variables, it625

follows that UAP also fails on [0, 1]×
∏dx

i=2{li}. Consider a continuous target function626

f : [0, 1]×
dx∏
i=2

{li} → R, (x1, x2, · · · , xdx
) 7→ f1(x1). (46)

The reason why we consider such target function is that every vector-value function f(x1, · · · , xdx)627

can be represent as f(x1, · · · , xdx
) =

(
f1(x1, · · · , xdx

), · · · , fdy
(x1, · · · , xdx

)
)
. If the UAP fails628

for f , it must fail on at least one of its scalar components. Hence it suffices to consider the one-629

dimensional (scalar) case. Moreover, since the values of x2, · · · , xdx
are fixed, the above reduction630

to a single-variable scalar function is justified. We only need to demonstrate that there exists at least631

one such function that cannot be approximated arbitrarily well by any Nsoftmax
∗ ∈ N softmax

∗ .632

Then we will use Proposition 5 to finish the rest part of this proof. Before that, we need to rewrite the633

form of the output of Nsoftmax, which is634

Nsoftmax
∗ (x) =

k∑
i=1

aie
wi·xi+bi

k∑
j=1

ewj ·xj+bj

, (47)

where (ai, wi, bi) ∈ A×W ×B is a finite set and k is the number of hidden neurons. Consequently,635

the set {W × B} is finite, and we denote it as N := #{W × B}. By regrouping identical terms in636

the numerator, we can rewrite the equation as637

Nsoftmax
∗ (x) =

N∑
i=1

ãie
wi·xi+bi

dx∑
j=1

ewj ·xj+bj

. (48)
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It is important to note that this transformation applies to any Nsoftmax
∗ ∈ N softmax

∗ , ensuring that the638

number of summation terms in the numerator remains strictly bounded by N .639

Finally, we construct a function which cannot be approximated by such softmax networks. Assume a640

continuous target function641

g : [0, 1]×
dx∏
i=2

{li} → R, (x1, x2, · · · , xdx
) 7→ cos

(
(N + 1)πx1

)
, (49)

who has (N +1) zero points in. If N softmax
∗ achieves the UAP, we assume that Nsoftmax

∗ ∈ N softmax
∗642

which satisfies ∥Nsoftmax
∗ − g∥ ≤ ε < 1

10 . We denote zi =
i

N+1 for i = 0, 1, · · · , N + 1. It easy to643

find out that g(zi) = 1 if i is even, and g(zi) = −1 if i is odd, which means Nsoftmax
∗ (zi) > 0.9 for644

even i is and Nsoftmax
∗ (zi) < −0.9 for odd i. According to Rolle’s Theorem, Nsoftmax

∗ has at least645

N + 1 zero points, which is contradicts to the Proposition 5. And we finish our proof.646

We will use Figure 1 to provide readers with an intuitive illustration of why a class of functions whose647

number of zeros is bounded cannot achieve universal approximation.648

x

1

2

3

4 N + 1

N + 2

Figure 1: A demonstration of function cannot be approximate. The black curve represents the target
function, which has N + 1 zero points. The red curve represents a sum of exponentials, which has no
more then N zero points. If the UAP holds, then the red curve must pass near the N + 2 marked
extrema in the figure. By Rolle’s theorem, the function represented by the red curve would then have
N + 1 zeros, which contradicts its intrinsic properties.

C.3 Proof of Theorem 7649

Theorem 7. The function class T σ
∗ , with a non-polynomial, locally bounded, piecewise continuous650

element-wise activation function or softmax activation function σ and every Tσ ∈ T σ
∗ satisfys651

Assumption 1, cannot achieve the UAP. Specifically, for any compact domain K ⊂ Rdx−1, there exists652

a continuous function f : K → Rdy and ε0 > 0 such that653

max
x∈K

∥∥f(x)− Tσ
∗ (x̃)

∥∥ ≥ ε0, ∀ Tσ
∗ ∈ T σ

∗ . (50)

Proof. For cases of element-wise activation, since Tσ
∗ has a similar structure to Nσ

∗ , we find that654

span{Tσ
∗} is also a finite-dimensional function space. Hence, the same argument from Lemma 6 can655

be applied here to complete the proof.656

Then we prove the softmax case. Recall Equation (40), the output of Tsoftmax
∗ (x̃;X,Y ) can be view657

as658

Tsoftmax
∗ (x̃;X,Y ) =

n∑
i=1

aie
wi·xi+bi

n∑
j=1

ewj ·xj+bj + ex̃⊤B⊤Cx̃

, (51)

where n represents the length of context and ai ∈ A, wi ∈ W, bi ∈ B for some finite sets A, W, B.659

This allow us to apply the same approach then proving Lemma 6, which leads to the conclusion that660

T σ
∗ cannot achieve the UAP.661
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D Kronecker Approximation Theorem662

To facilitate our constructive proof, we introduce the Kronecker Approximation Theorem as an663

auxiliary tool to support the main theorem.664

Lemma 13 (Kronecker Approximation Theorem [59]). Given real n-tuples α(i) =665

(α
(i)
1 , α

(i)
2 , · · · , α(i)

n ) ∈ Rn for i = 1, · · · ,m and β = (β1, β2, · · · , βn) ∈ Rn, the following666

condition holds: for any ε > 0, there exist qi, li ∈ Z such that667 ∥∥∥∥∥βj −
m∑
i=1

qiα
(i)
j + lj

∥∥∥∥∥ < ε, j = 1, · · · , n, (52)

if and only if for any r1, · · · , rn ∈ Z, i = 1, · · · ,m with668

n∑
j=1

α
(i)
j rj ∈ Z, i = 1, · · · ,m, (53)

the number
n∑

j=1

βjrj is also an integer. In the case of m = 1 and n = 1, for any α, β ∈ R with α669

irrational and ε > 0, there exist integers l and q with q > 0 such that |β − qα+ l| < ε.670

Lemma 13 indicates that if the condition in equation (53) is satisfied only when all ri are zeros, then671

the set {Mq + l | q ∈ Zm, l ∈ Rn} is dense in Rn, where the matrix M ∈ Rn×m is assembled with672

vectors α(i), i.e. M = [α(1), α(2), · · · , α(m)]. In the case of m = 1 and n = 1, let α =
√
2, then673

Lemma 13 implies that the set {q
√
2± l | l ∈ N+, q ∈ N+} is dense in R. We will build upon this674

result to prove one of the most significant theorems in this article.675

E Proofs of Section 4676

In this appendix, we lay the groundwork for the proof of Theorem 8 by first introducing Lemma 14.677

We then present Theorem 8 and provide its complete proof, demonstrating that T σ
∗,P can realize the678

UAP. To facilitate understanding of Theorem 8, we provide a simple illustrative example. While679

the theorem assumes dense positional encodings, we relax this condition under specific activation680

functions, as formalized in Lemma 15 and Theorem 9.681

E.1 Lemma 14682

Lemma 14. For a network with a fixed width and a continuous activation function, it is possible683

to apply slight perturbations within an arbitrarily small error margin. For any network Nσ
1 (x)684

defined on a compact set K ⊂ Rdx , with parameters A ∈ Rdy×k,W ∈ Rk×dx , b ∈ Rk×1, there685

exists M > 0,M1 > 0 (∥x∥ < M and ∥ai∥ < M1, i = 1, · · · , k ) , and for any ε > 0, there exists686

0 < δ < ε
2M1k

and a perturbed network Nσ
2 (x) with parameters Ã ∈ Rdy×k, W̃ ∈ Rk×dx , b̃ ∈ Rk×1687

(
∥∥∥σ(w̃ix+ b̃i)

∥∥∥ < M1, i = 1, · · · , k), such that if max{∥ai − ãi∥,M∥wi − w̃i∥ + ∥b − b̃∥ | i =688

1, · · · , k} < δ, then689

∥Nσ
1 (x)−Nσ

2 (x)∥ < ε, ∀x ∈ K, (54)

where ai, ãi are the i-th column vectors of A, Ã, respectively, wi, w̃i are the i-th row vectors of W, W̃690

, and bi, b̃i are the i-th components of b, b̃, respectively, for any i = 1, · · · , k.691

Proof. We have Nσ
1 (x) =

k∑
i=1

aiσ(wix + bi), where ai ∈ Rdy , wi ∈ Rdx , bi ∈ R, and Ñσ
2 (x) =692

k∑
i=1

ãiσ(w̃ix + b̃i), where ãj ∈ Rdy , w̃i ∈ Rdx , b̃i ∈ R. For any x ∈ K, ∥x∥ < M . There exists a693

constant M1 > 0 such that for any i = 1, · · · , k, the following inequalities hold: ∥ai∥ < M1 and694 ∥∥∥σ(w̃ix+ b̃i)
∥∥∥ < M1.695
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Due to the continuity of the activation function, for any ε > 0, there exists 0 < δ < ε
2M1k

, such that696

if ∥wix+bi−(w̃ix+ b̃i)∥ ≤ ∥wi− w̃i∥∥x∥+∥bi− b̃i∥ < M∥wi− w̃i∥+∥b− b̃∥ < δ, i = 1, · · · , k,697

then ∥σ(wix+ bi)− σ(w̃ix+ b̃i)∥ < ε
2M1k

, i = 1, · · · , k, and ∥ai − ãi∥ < δ, i = 1, · · · , k.698

Combining all these inequalities, we can further derive:699

∥Nσ
1 (x)−Nσ

2 (x)∥

∥∥∥∥∥
k∑

i=1

aiσ(wix+ bi)−
k∑

i=1

ãiσ(w̃ix+ b̃i)

∥∥∥∥∥
≤

∥∥∥∥∥
k∑

i=1

aiσ(wix+ bi)−
k∑

i=1

aiσ(w̃ix+ b̃i)

∥∥∥∥∥+
∥∥∥∥∥

k∑
i=1

aiσ(w̃ix+ b̃i)−
k∑

i=1

ãiσ(w̃ix+ b̃i)

∥∥∥∥∥
≤ max

i
∥ai∥

∥∥∥∥∥
k∑

i=1

σ(wix+ bi)−
k∑

i=1

σ(w̃ix+ b̃i)

∥∥∥∥∥+max
i

∥∥∥σ(w̃ix+ b̃i)
∥∥∥ ∥∥∥∥∥

k∑
i=1

ai −
k∑

i=1

ãi

∥∥∥∥∥
≤ max

i
∥ai∥

k∑
i=1

∥∥∥σ(wix+ bi)− σ(w̃ix+ b̃i)
∥∥∥+max

i

∥∥∥σ(w̃ix+ b̃i)
∥∥∥ k∑

i=1

∥ai − ãi∥

< M1k
ε

2M1k
+M1k

ε

2M1k
= ε

.

(55)
The proof is complete.700

E.2 Proof of Theorem 8701

Theorem 8. Let T σ
∗,P be the class of functions Tσ

∗,P satisfying Assumption 1, with a non-polynomial,702

locally bounded, piecewise continuous element-wise activation function σ, the subscript refers the703

finite vocabulary V = Vx ×Vy, P = Px ×Py represents the positional encoding map, and denote a704

set S as:705

S := Vx + Px =
{
xi + P(j)

x

∣∣∣ xi ∈ Vx, i, j ∈ N+
}
. (56)

If S is dense in Rdx , {1, −1,
√
2, 0}dy ⊂ Vy and Py = 0, then T σ

∗,P can achieve the UAP. More706

specifically, given a network Tσ
∗,P , then for any continuous function f : Rdx−1 → Rdy defined on a707

compact domain K and ε > 0, there always exist X ∈ Rdx×n and Y ∈ Rdy×n from the vocabulary708

V , i.e. x(i) ∈ Vx, y
(i) ∈ Vy , with some length n ∈ N+ such that709 ∥∥Tσ

∗,P (x̃;X,Y )− f(x)
∥∥ < ε, ∀x ∈ K. (57)

Proof. Our conclusion holds for all element-wise continuous activation functions in T σ
∗,P . We now710

assume dy = 1 for simplicity, and the case dy ̸= 1 will be considered later.711

We are reformulating the problem. Using Lemma 3, we have,712

Tσ
∗,P (x̃;X,Y ) = UYP σ

(
(X + P)

⊤
B⊤Cx̃

)
= UYP σ

(
X⊤

PB⊤Cx̃
)
. (58)

Since Py = 0, it follows that YP = Y . For any continuous function f : Rdx−1 → Rdy defined on a713

compact domain K and for any ε > 0, we aim to show that there exists Tσ
∗,P ∈ T σ

∗,P such that:714 ∥∥∥∥Tσ
∗,P

([
x
1

]
;X,Y

)
− Uf(x)

∥∥∥∥ < ∥U∥ε, ∀x ∈ K,

⇔
∥∥Y σ

(
X⊤

PB⊤Cx̃
)
− f(x)

∥∥ < ε, ∀x ∈ K.

(59)

In the main text, for illustrative purposes, we consider the special case where U is the identity matrix715

to simplify the exposition. In the present analysis, we dispense with this assumption. We already716

have a Lemma 2 ensuring the existence of a one-hidden-layer network Nσ (with activation function717

21



σ satisfying the required conditions) that approximates f(x). Our proof is divided into four steps,718

serving as a bridge built upon the Lemma 2:719

Y σ
(
X⊤

PB⊤Cx̃
) Lemma 2−−−−−→ Nσ

∗ (x)
step (3)−−−−→ N′(x)

step (2)−−−−→ Nσ(x)
step (1)−−−−→ f(x). (60)

We present the specific details at each step.720

Step (1): Approximating f(x) Using Nσ(x). Supported by Lemma 2, there exists a neural network721

Nσ(x) = Aσ(Wx+ b) =
k∑

i=1

ai σ(wix+ bi) ∈ N σ , with parameters k ∈ N+, A ∈ Rdy×k, b ∈ Rk,722

and W ∈ Rk×(dx−1),723

∥Aσ(Wx+ b)− f(x)∥ <
ε

3
, ∀x ∈ K. (61)

Step (2): Approximating Nσ(x) Using N′(x). Using Lemma 13 and Lemma 14, a neural network724

Nσ(x) =
k∑

i=1

aiσ(wix+ bi) ∈ N σ can be perturbed into N′(x) =
k∑

i=1

(q
√
2± l)i σ(w̃ix+ b̃i) (with725

qi ∈ N+ and li ∈ N+, i = 1, · · · , k), such that for any ε > 0, there exists 0 < δ < ε
6M1k

satisfying:726

max{∥ai − (q
√
2± l)i∥,M∥wi − w̃i∥+ ∥b− b̃∥ | i = 1, · · · , k} < δ, (62)

ensuring:727

∥Nσ(x)−N′(x)∥ =

∥∥∥∥∥
k∑

i=1

ai σ(wix+ bi)−
k∑

i=1

(q
√
2± l)i σ(w̃ix+ b̃i)

∥∥∥∥∥ <
ε

3
, ∀x ∈ K. (63)

Step (3): Approximating N′(x) Using Nσ
∗ (x). Next, we show that Nσ

∗ (x) =
n∑

i=1

y(i) σ(R̃ix̃) ∈728

N σ
∗ can approximate N′(x) =

k∑
i=1

(q
√
2± l)i σ(w̃ix̃). As a demonstration, we approximate a single729

term (q
√
2± l)1 σ(w̃1x̃). Since the positional encoding is fixed, i.e. Vx + P(1) is a finite set, one of730

two cases must occur:731

1. Valid Position: If there exists x(1) ∈ Vx where (x(1) + P(1))⊤B⊤C ≈ w̃1732

2. Invalid Position: Set y(1) = 0 to nullify contribution733

Since S is dense in Rdx and B⊤C is non-singular, the set G := {R̃ | R̃ = X⊤
PB⊤C,XP ⊂ 2S}734

remains dense. Let K1 denote the set of indices corresponding to all "valid" positions for w̃1. Since735

y(i) ∈ {1,−1,
√
2, 0}, we require q1 + l1 elements from G that approximate w̃1, such that736 ∥∥∥∥∥∥

∑
j∈K1

y(j) σ(R̃j x̃)− (q
√
2± l)1 σ(w̃1x̃)

∥∥∥∥∥∥
= ∥

√
2
∑
j∈Q1

σ(R̃j x̃)±
∑
j∈L1

σ(R̃j x̃)− (q
√
2± l)1 σ(w̃1x̃)∥

<
ε

3k
, ∀x ∈ K.

(64)

Here, #(K1) = q1 + l1 and K1 = Q1

⋃
L1, where Q1, L1 are disjoint subsets of positive integer737

indices satisfying #(Q1) = q1 and #(L1) = l1. For this construction, we assign y(j) =
√
2 for738

j ∈ Q1 and y(j) = ±1 for j ∈ L1. For j ∈ {1, 2, 3, · · · ,max
i

{i ∈ K1}}\K1, i.e., for the Invalid739

Position, we set y(j) = 0.740

The multi-term approximation employs parallel construction via disjoint node subsets Ki = Qi ∪ Li,741

where Qi (qi nodes) and Li (li nodes) implement
√
2 and ±1 coefficients respectively. For j /∈

k⋃
l=1

Kl,742
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we set y(j) = 0. Each term achieves:743 ∥∥∥∥∥∥
∑
j∈Ki

y(j)σ(R̃j x̃)− (q
√
2± l)iσ(w̃ix̃)

∥∥∥∥∥∥ <
ε

3k
. (65)

We then define n = max{j | j ∈
k⋃

l=1

Kl}. The complete network combines these approximations744

through:745

∥Nσ
∗ (x)−N′(x)∥ =

∥∥∥∥∥
n∑

i=1

y(i) σ(R̃ix̃)−
k∑

i=1

(q
√
2± l)i σ(w̃ix̃)

∥∥∥∥∥ <
ε

3
, ∀x ∈ K. (66)

Step (4): Combining Results. Combining all results, we have:746

∥Y σ
(
X⊤

PB⊤Cx̃
)
− f(x)∥ = ∥Nσ

∗ (x)− f(x)∥
< ∥Nσ

∗ (x)−N′(x)∥+ ∥N′(x)−Nσ(x)∥+ ∥Nσ(x)− f(x)∥
< ε, ∀x ∈ K.

(67)

The scalar-output results (dy = 1) extend naturally to vector-valued functions via component-747

wise approximation. For any continuous f : Rdx−1 → Rdy on a compact domain K, uniform748

approximation is achieved by independently approximating each coordinate function fj with scalar749

networks Nσ
∗,j(x) satisfying750 ∥∥Nσ

∗,j(x)− fj(x)
∥∥ <

ε√
dy

, ∀x ∈ K. (68)

The full approximator is then obtained by concatenating the component networks.751

Nσ
∗ (x) =

 Nσ
∗,1(x)

...
Nσ

∗,dy
(x)

 , ∥Nσ
∗ (x)− f(x)∥ < ε, (69)

Nσ
∗,j(x) =

n∑
i=1

y
(i)
j σ(R̃ix̃), (70)

where y
(i)
j is the j-th row of the y(i). We require that the index sets satisfy K

(o)
i ∩K

(u)
j = ∅ for all752

o, u, i, j ∈ N+, where K
(o)
i denotes the index set constructed for the i-th term approximation in the753

o-th output dimension. Furthermore, each y(j) must have at most one non-zero element across its754

dimensions. This ensures we achieve uniform approximation by independently handling each output755

dimension. The proof is complete.756

E.3 Example of Theorem 8757

We present a concrete example with 2D input (dx = 2) and 2D output (dy = 2) to illustrate the758

universal approximation capability of our architecture. Consider a continuous function f : [0, 1]2 →759

R2 defined by760

f(x1, x2) =

[
f1(x1, x2)
f2(x1, x2)

]
. (71)

Our goal is to construct a module Tσ
∗,P such that761 ∥∥∥∥∥Tσ

∗,P

([
x1

x2

1

]
;X,Y

)
− f(x1, x2)

∥∥∥∥∥ < ε. (72)

Step (1): Component-wise Approximation. For each component fi, there exists a single-hidden-762

layer neural network Nσ
i (x) = Aiσ(Wix+ bi) such that763

sup
x∈[0,1]2

∥fi(x)−Nσ
i (x)∥ <

ε

6
√
2
, i = 1, 2. (73)

23



Step (2): Rational Perturbation. We approximate each Nσ
i by a rational network N′

i:764

N′
1(x) = (3

√
2− 2)σ(w̃⊤

1 x̃), (74)

N′
2(x) = (2

√
2 + 1)σ(w̃⊤

2 x̃), (75)

where x̃ = [x1 x2 1]
⊤, satisfying765

sup
x∈[0,1]2

∥Nσ
i (x)−N′

i(x)∥ <
ε

6
√
2
, i = 1, 2. (76)

Step (3): Architecture Realization. We define a Transformer-like module Nσ
∗ (x) with shared766

representation:767

R̃ = [≈ w̃1 ≈ w̃1 ≈ w̃1 ≈ w̃1 ≈ w̃1 ≈ w̃2 ≈ w̃2 ≈ w̃2]
⊤
, (77)

768

Y =

[√
2

√
2

√
2 −1 −1 0 0 0

0 0 0 0 0
√
2

√
2 1

]
, (78)

such that769

Nσ
∗ (x) =

[∑8
i=1 y

(i)
1 σ(R̃⊤

i x̃)∑8
i=1 y

(i)
2 σ(R̃⊤

i x̃)

]
, sup

x∈[0,1]2
∥N′

i(x)−Nσ
∗,i(x)∥ <

ε

6
√
2
. (79)

Step (4): Error Analysis. The total approximation error satisfies770

∥f(x)−Nσ
∗ (x)∥ ≤

√√√√ 2∑
i=1

(
∥fi −Nσ

i ∥+ ∥Nσ
i −N′

i∥+ ∥N′
i −Nσ

∗,i∥
)2

(80)

≤

√
2 ·
(

ε

2
√
2

)2

=
ε

2
< ε. (81)

Implementation Details. Node allocation is shown in Table 2.771

Table 2: Node allocation for 2D output example

Node Index y(i) R̃i Purpose

1–3 (
√
2, 0) ≈ w̃1 3

√
2 term for σ(w̃⊤

1 x̃)
4–5 (−1, 0) ≈ w̃1 −2 term for σ(w̃⊤

1 x̃)
6–7 (0,

√
2) ≈ w̃2 2

√
2 term for σ(w̃⊤

2 x̃)
8 (0, 1) ≈ w̃2 1 term for σ(w̃⊤

2 x̃)

Alternative Construction. A compact design uses:772

Y =

[√
2

√
2

√
2

√
2

√
2

−1 −1 0 1 0

]
, R̃ =


≈ w̃1

≈ w̃1

≈ w̃1

≈ w̃2

≈ w̃2

 , (82)

which reduces the number of tokens but complicates the analysis in high dimensions. We thus adopt773

disjoint index sets to ensure analytical tractability.774

E.4 Proof of Theorem 9775

Before prove Theorem 9, we need to prove the following lemma with the help of the well-known776

Stone-Weierstrass theorem.777
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Lemma 15. For any continuous function f : Rdx → Rdy defined on a compact domain K, and for778

any ε > 0, there exist a network Nexp(x) : Rdx → Rdy satisfying779

∥Nexp(x)− f(x)∥ < ε, ∀x ∈ K, (83)

where b = 0 and all row vectors of W are restricted in a neighborhood B(ω∗, δ) with any prefixed780

w∗ ∈ Rdx and radius δ > 0.781

Proof. Assume f(x) = (f1(x), · · · , fdx(x)). According to Stone-Weierstrass theorem, for any782

ε > 0, there exist polynomials Pi(x) satisfying783

max
x∈K

∥Pi(x)− fi(x)e
−w∗·x∥ <

ε

2maxx∈K ∥ew∗·x∥
,

⇒ max
x∈K

∥Pi(x)e
w∗·x − fi(x)∥ <

ε

2
, i = 1, 2, · · · , dx.

(84)

Then we construct a single-layer FNN with exponential activation function to approximate Pi(x)e
w∗·x.784

The multiple derivatives of h(w) := ew·x = exp(w1x1+ · · ·+wdx
xdx

) with respect to w1, · · · , wdx
785

is786

∂|α|h

∂wα
=

∂|α|h

∂wα1
1 · · · ∂wαdx

dx

, (85)

where α ∈ Ndx represents the index and |α| := α1 + · · · + αdx
. Actually, the form of multiple787

derivative ∂|α|h
∂wα is a polynomial of |α| degree with respect to x1, · · · , xdx

times h(w). Hence, each788

target term Pi(x)e
w∗·x can be written as a linear combination of such multiple derivatives of h(w),789

which allow us to approximate the required partials and thus complete the proof. And multiple790

derivative can be approximated by finite difference method, and the approach of finite difference791

method can be done by one hidden layer.792

Remark 16. We give two examples of approximating multiple derivatives of h(w) below.793

x1h(w) =
∂h

∂w1

∣∣∣∣
w=w∗

=
h(w∗ + λe1)− h(w∗)

λ
+R1(λ,w

∗)

= λ−1h(w∗ + λe1)− λ−1h(w∗) +R1(λ,w
∗),

(86)

and794

x1x2h(w) =
∂2h

∂w1∂w2

∣∣∣∣
w=w∗

=
h(w∗ + λ(e1 + e2))− h(w∗ + λe1)− h(w∗ + λe2) + h(w∗)

λ
+R2(λ,w

∗)

= λ−1h((w∗ + λ(e1 + e2)) · x)− λ−1h((w∗ + λe1) · x)−
λ−1h((w∗ + λe2) · x) + λ−1h(w∗ · x) +R2(λ,w

∗),

(87)

where e1 = (1, 0, 0, · · · , 0), e2 = (0, 1, 0, · · · , 0) are unite vectors and R1(λ,w
∗), R2(λ,w

∗) are795

error terms with respect to λ and w∗. According to Taylor’s theorem, the error terms R1(λ,w
∗) =796

λ ∂2h
∂w2

1

∣∣
w=ξ

for some ξ between w∗ and w∗ + λe1. It is obvious that the partial differential term is797

uniformly bounded, so the resulting error can be made arbitrarily small by a suitable choice of the798

parameter λ. The argument for R2(λ,W
∗)is entirely analogous and is therefore omitted; see [60]799

for further details.800

Since λ is very small and the exponential term ew
∗·x only involves the parameters w∗, w∗ + e1 and801

w∗ + e2, which all lie within a small neighborhood of w∗, the desired conclusion can be drawn, and802

this means we can actually restrict that all row vectors of W are restructed in B(W, δ).803

Theorem 9 (Formal Version). Let T σ
∗,P be the class of functions Tσ

∗,P satisfying Assumption 1, with804

a non-polynomial, locally bounded, piecewise continuous element-wise activation function σ, the805
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subscript refers the finite vocabulary V = Vx×Vy, P = Px×Py represents the positional encoding806

map, and denote a set S as:807

S := Vx + Px =
{
xi + P(j)

x

∣∣∣ xi ∈ Vx, i, j ∈ N+
}
. (88)

If the set S is dense in [−1, 1]dx , then T ReLU
∗,P is capable of achieving the UAP. Additionally, if S is808

only dense in a neighborhood B(w∗, δ) of a point w∗ ∈ Rdx with radius δ > 0, then the class of809

transformers with exponential activation, i.e. T exp
∗,P , is capable of achieving the UAP.810

Proof. For the proof of ReLU case, we follow the same reasoning as in the pervious one, noting811

the ReLU(ax) = aReLU(x) holds for any positive a. In the proof of Theorem 8, we construct a812

TReLU
∗,P (x̃;X,Y ) ∈ T ReLU

∗,P to approximate a FNN AReLU(Wx+B). Here we can do the similar813

construction to find another T̃ReLU
∗,P (x̃;X,Y ) ∈ T ReLU

∗,P to approximate λAReLU
(
λ−1(Wx+ b)

)
814

as the second to the forth steps in Theorem 8, where λ is big enough to make the row vectors in815

λ−1W is small enough so that S = {xi + P | xi ∈ V, i, j ∈ N+} is dense in [−1, 1]dx is sufficient.816

For exponential Transformers, by using Lemma 15, we can do the second step to the forth steps in817

Theorem 8 again, which is similat to ReLU case.818

F Weakened Assumption and Generalized Conclusions819

It is important to note that most of out conclusions remain valid even if Assumption 1 is weakened.820

Below we outline the reasoning.821

In general, we decompose the matrices as follows:822

Q⊤K =

[
O11 O12

O21 O22

]
, V =

[
D E
F U

]
, (89)

where O11, D ∈ Rdx×dx , O12, E ∈ Rdx×dy , O21, F ∈ Rdy×dx , and O22, U ∈ Rdy×dy , respec-823

tively. The attention mechanism can then be computed as:824

AttnσQ,K,V (Z) = V ZMσ(Z⊤Q⊤KZ)

=

[
D E
F U

] [
X x
Y 0

] [
In

0

]
σ

([
X⊤ Y ⊤

x⊤ 0

] [
O11 O12

O21 O22

] [
X x
Y 0

])

=

[
DX + EY 0
FX + UY 0

]
σ

([
O

(
X⊤O11 + Y ⊤O21

)
x

x⊤(O11X +O12Y
)

x⊤O11x

])
,

(90)

where O represents the matrix X⊤O11X+X⊤O12Y +Y ⊤O21X+Y ⊤O22Y . As a result, we have:825

Tσ (x̃;X,Y ) = (FX + UY )σ

((
X⊤O11 + Y ⊤O21

)
x̃

)
, (91)

for the case of element-wise activations, and:826

Tsoftmax(x̃;X,Y ) = (FX + UY )

(
softmax

([
(X⊤O11 + Y ⊤O21)x̃

x̃⊤O11x̃

]))
1:n

, (92)

for the case of softmax activation.827

By revisiting the definition of Tσ and Tσ
∗ , and comparing Tσ presented here with those in the828

preceding section, it is clear that the only distinction lies in the specific matrices involved, and matrix829

O11 and U is non-singular are the only conditions we need. Notably, the proof process for Theorem 7830

does not rely on any assumption, which means this conclusion stated in Section 3 can be further831

strengthened.832
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Answer: [Yes] .884
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Justification: Our assumptions are clearly stated as Assumption 1 in Section 2 and Ap-885

pendix F, and the proofs are provided in Appendix B to Appendix E.886

Guidelines:887

• The answer NA means that the paper does not include theoretical results.888

• All the theorems, formulas, and proofs in the paper should be numbered and cross-889

referenced.890

• All assumptions should be clearly stated or referenced in the statement of any theorems.891

• The proofs can either appear in the main paper or the supplemental material, but if892

they appear in the supplemental material, the authors are encouraged to provide a short893

proof sketch to provide intuition.894

• Inversely, any informal proof provided in the core of the paper should be complemented895

by formal proofs provided in appendix or supplemental material.896

• Theorems and Lemmas that the proof relies upon should be properly referenced.897

4. Experimental result reproducibility898

Question: Does the paper fully disclose all the information needed to reproduce the main ex-899

perimental results of the paper to the extent that it affects the main claims and/or conclusions900

of the paper (regardless of whether the code and data are provided or not)?901

Answer: [NA] .902

Justification: This paper does not include experiments.903

Guidelines:904

• The answer NA means that the paper does not include experiments.905

• If the paper includes experiments, a No answer to this question will not be perceived906

well by the reviewers: Making the paper reproducible is important, regardless of907

whether the code and data are provided or not.908

• If the contribution is a dataset and/or model, the authors should describe the steps taken909

to make their results reproducible or verifiable.910

• Depending on the contribution, reproducibility can be accomplished in various ways.911

For example, if the contribution is a novel architecture, describing the architecture fully912

might suffice, or if the contribution is a specific model and empirical evaluation, it may913

be necessary to either make it possible for others to replicate the model with the same914

dataset, or provide access to the model. In general. releasing code and data is often915

one good way to accomplish this, but reproducibility can also be provided via detailed916

instructions for how to replicate the results, access to a hosted model (e.g., in the case917

of a large language model), releasing of a model checkpoint, or other means that are918

appropriate to the research performed.919

• While NeurIPS does not require releasing code, the conference does require all submis-920

sions to provide some reasonable avenue for reproducibility, which may depend on the921

nature of the contribution. For example922

(a) If the contribution is primarily a new algorithm, the paper should make it clear how923

to reproduce that algorithm.924

(b) If the contribution is primarily a new model architecture, the paper should describe925

the architecture clearly and fully.926

(c) If the contribution is a new model (e.g., a large language model), then there should927

either be a way to access this model for reproducing the results or a way to reproduce928

the model (e.g., with an open-source dataset or instructions for how to construct929

the dataset).930

(d) We recognize that reproducibility may be tricky in some cases, in which case931

authors are welcome to describe the particular way they provide for reproducibility.932

In the case of closed-source models, it may be that access to the model is limited in933

some way (e.g., to registered users), but it should be possible for other researchers934

to have some path to reproducing or verifying the results.935

5. Open access to data and code936

Question: Does the paper provide open access to the data and code, with sufficient instruc-937

tions to faithfully reproduce the main experimental results, as described in supplemental938

material?939
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Answer: [NA] .940

Justification: This paper does not include experiments requiring code.941

Guidelines:942

• The answer NA means that paper does not include experiments requiring code.943

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/944

public/guides/CodeSubmissionPolicy) for more details.945

• While we encourage the release of code and data, we understand that this might not be946

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not947

including code, unless this is central to the contribution (e.g., for a new open-source948

benchmark).949

• The instructions should contain the exact command and environment needed to run to950

reproduce the results. See the NeurIPS code and data submission guidelines (https:951

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.952

• The authors should provide instructions on data access and preparation, including how953

to access the raw data, preprocessed data, intermediate data, and generated data, etc.954

• The authors should provide scripts to reproduce all experimental results for the new955

proposed method and baselines. If only a subset of experiments are reproducible, they956

should state which ones are omitted from the script and why.957

• At submission time, to preserve anonymity, the authors should release anonymized958

versions (if applicable).959

• Providing as much information as possible in supplemental material (appended to the960

paper) is recommended, but including URLs to data and code is permitted.961

6. Experimental setting/details962

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-963

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the964

results?965

Answer: [NA] .966

Justification: This paper does not include experiments.967

Guidelines:968

• The answer NA means that the paper does not include experiments.969

• The experimental setting should be presented in the core of the paper to a level of detail970

that is necessary to appreciate the results and make sense of them.971

• The full details can be provided either with the code, in appendix, or as supplemental972

material.973

7. Experiment statistical significance974

Question: Does the paper report error bars suitably and correctly defined or other appropriate975

information about the statistical significance of the experiments?976

Answer: [NA] .977

Justification: This paper does not include experiments.978

Guidelines:979

• The answer NA means that the paper does not include experiments.980

• The authors should answer "Yes" if the results are accompanied by error bars, confi-981

dence intervals, or statistical significance tests, at least for the experiments that support982

the main claims of the paper.983

• The factors of variability that the error bars are capturing should be clearly stated (for984

example, train/test split, initialization, random drawing of some parameter, or overall985

run with given experimental conditions).986

• The method for calculating the error bars should be explained (closed form formula,987

call to a library function, bootstrap, etc.)988

• The assumptions made should be given (e.g., Normally distributed errors).989

• It should be clear whether the error bar is the standard deviation or the standard error990

of the mean.991
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• It is OK to report 1-sigma error bars, but one should state it. The authors should992

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis993

of Normality of errors is not verified.994

• For asymmetric distributions, the authors should be careful not to show in tables or995

figures symmetric error bars that would yield results that are out of range (e.g. negative996

error rates).997

• If error bars are reported in tables or plots, The authors should explain in the text how998

they were calculated and reference the corresponding figures or tables in the text.999

8. Experiments compute resources1000

Question: For each experiment, does the paper provide sufficient information on the com-1001

puter resources (type of compute workers, memory, time of execution) needed to reproduce1002

the experiments?1003

Answer: [NA] .1004

Justification: This paper does not include experiments.1005

Guidelines:1006

• The answer NA means that the paper does not include experiments.1007

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,1008

or cloud provider, including relevant memory and storage.1009

• The paper should provide the amount of compute required for each of the individual1010

experimental runs as well as estimate the total compute.1011

• The paper should disclose whether the full research project required more compute1012

than the experiments reported in the paper (e.g., preliminary or failed experiments that1013

didn’t make it into the paper).1014

9. Code of ethics1015

Question: Does the research conducted in the paper conform, in every respect, with the1016

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1017

Answer: [Yes] .1018

Justification: This research is theoretical in nature and does not involve human subjects, per-1019

sonal data, or potentially harmful applications. All results are derived through mathematical1020

analysis and do not raise ethical concerns as outlined in the NeurIPS Code of Ethics.1021

Guidelines:1022

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1023

• If the authors answer No, they should explain the special circumstances that require a1024

deviation from the Code of Ethics.1025

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-1026

eration due to laws or regulations in their jurisdiction).1027

10. Broader impacts1028

Question: Does the paper discuss both potential positive societal impacts and negative1029

societal impacts of the work performed?1030

Answer: [NA]1031

Justification: This paper focuses on the theoretical expressivity of Transformers under1032

ICL and provides approximation results from a mathematical perspective. We believe that1033

discussing societal impact falls outside the scope of this foundational contribution.1034

Guidelines:1035

• The answer NA means that there is no societal impact of the work performed.1036

• If the authors answer NA or No, they should explain why their work has no societal1037

impact or why the paper does not address societal impact.1038

• Examples of negative societal impacts include potential malicious or unintended uses1039

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1040

(e.g., deployment of technologies that could make decisions that unfairly impact specific1041

groups), privacy considerations, and security considerations.1042
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• The conference expects that many papers will be foundational research and not tied1043

to particular applications, let alone deployments. However, if there is a direct path to1044

any negative applications, the authors should point it out. For example, it is legitimate1045

to point out that an improvement in the quality of generative models could be used to1046

generate deepfakes for disinformation. On the other hand, it is not needed to point out1047

that a generic algorithm for optimizing neural networks could enable people to train1048

models that generate Deepfakes faster.1049

• The authors should consider possible harms that could arise when the technology is1050

being used as intended and functioning correctly, harms that could arise when the1051

technology is being used as intended but gives incorrect results, and harms following1052

from (intentional or unintentional) misuse of the technology.1053

• If there are negative societal impacts, the authors could also discuss possible mitigation1054

strategies (e.g., gated release of models, providing defenses in addition to attacks,1055

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1056

feedback over time, improving the efficiency and accessibility of ML).1057

11. Safeguards1058

Question: Does the paper describe safeguards that have been put in place for responsible1059

release of data or models that have a high risk for misuse (e.g., pretrained language models,1060

image generators, or scraped datasets)?1061

Answer: [NA]1062

Justification: This paper does not release any data, models, or tools that pose risks of misuse1063

or dual use. The work is purely theoretical and focuses on the UAP in VICL with single-layer1064

Transformers.1065

Guidelines:1066

• The answer NA means that the paper poses no such risks.1067

• Released models that have a high risk for misuse or dual-use should be released with1068

necessary safeguards to allow for controlled use of the model, for example by requiring1069

that users adhere to usage guidelines or restrictions to access the model or implementing1070

safety filters.1071

• Datasets that have been scraped from the Internet could pose safety risks. The authors1072

should describe how they avoided releasing unsafe images.1073

• We recognize that providing effective safeguards is challenging, and many papers do1074

not require this, but we encourage authors to take this into account and make a best1075

faith effort.1076

12. Licenses for existing assets1077

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1078

the paper, properly credited and are the license and terms of use explicitly mentioned and1079

properly respected?1080

Answer: [NA]1081

Justification: The paper does not use any external assets such as datasets, models, or third-1082

party code. The research is purely theoretical and does not rely on pre-existing software or1083

data resources.1084

Guidelines:1085

• The answer NA means that the paper does not use existing assets.1086

• The authors should cite the original paper that produced the code package or dataset.1087

• The authors should state which version of the asset is used and, if possible, include a1088

URL.1089

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1090

• For scraped data from a particular source (e.g., website), the copyright and terms of1091

service of that source should be provided.1092

• If assets are released, the license, copyright information, and terms of use in the1093

package should be provided. For popular datasets, paperswithcode.com/datasets1094

has curated licenses for some datasets. Their licensing guide can help determine the1095

license of a dataset.1096
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• For existing datasets that are re-packaged, both the original license and the license of1097

the derived asset (if it has changed) should be provided.1098

• If this information is not available online, the authors are encouraged to reach out to1099

the asset’s creators.1100

13. New assets1101

Question: Are new assets introduced in the paper well documented and is the documentation1102

provided alongside the assets?1103

Answer: [NA]1104

Justification: This paper is theoretical in nature and does not introduce or release any new1105

datasets, models, or software assets.1106

Guidelines:1107

• The answer NA means that the paper does not release new assets.1108

• Researchers should communicate the details of the dataset/code/model as part of their1109

submissions via structured templates. This includes details about training, license,1110

limitations, etc.1111

• The paper should discuss whether and how consent was obtained from people whose1112

asset is used.1113

• At submission time, remember to anonymize your assets (if applicable). You can either1114

create an anonymized URL or include an anonymized zip file.1115

14. Crowdsourcing and research with human subjects1116

Question: For crowdsourcing experiments and research with human subjects, does the paper1117

include the full text of instructions given to participants and screenshots, if applicable, as1118

well as details about compensation (if any)?1119

Answer: [NA]1120

Justification: This paper does not involve any crowdsourcing or experiments with human1121

subjects.1122

Guidelines:1123

• The answer NA means that the paper does not involve crowdsourcing nor research with1124

human subjects.1125

• Including this information in the supplemental material is fine, but if the main contribu-1126

tion of the paper involves human subjects, then as much detail as possible should be1127

included in the main paper.1128

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1129

or other labor should be paid at least the minimum wage in the country of the data1130

collector.1131

15. Institutional review board (IRB) approvals or equivalent for research with human1132

subjects1133

Question: Does the paper describe potential risks incurred by study participants, whether1134

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1135

approvals (or an equivalent approval/review based on the requirements of your country or1136

institution) were obtained?1137

Answer: [NA] .1138

Justification: The paper does not involve crowdsourcing nor research with human subjects.1139

Guidelines:1140

• The answer NA means that the paper does not involve crowdsourcing nor research with1141

human subjects.1142

• Depending on the country in which research is conducted, IRB approval (or equivalent)1143

may be required for any human subjects research. If you obtained IRB approval, you1144

should clearly state this in the paper.1145

• We recognize that the procedures for this may vary significantly between institutions1146

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1147

guidelines for their institution.1148
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• For initial submissions, do not include any information that would break anonymity (if1149

applicable), such as the institution conducting the review.1150

16. Declaration of LLM usage1151

Question: Does the paper describe the usage of LLMs if it is an important, original, or1152

non-standard component of the core methods in this research? Note that if the LLM is used1153

only for writing, editing, or formatting purposes and does not impact the core methodology,1154

scientific rigorousness, or originality of the research, declaration is not required.1155

Answer: [NA] .1156

Justification: The core method development in this research does not involve LLMs1157

Guidelines:1158

• The answer NA means that the core method development in this research does not1159

involve LLMs as any important, original, or non-standard components.1160

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1161

for what should or should not be described.1162
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